
Mass Storage Flash
for Code Storage Applications

White Paper
EXECUTIVE SUMMARY
AMD has ideal product solutions for applications re-
quiring low, medium, or high density XIP (execute in
place) random access NOR Flash or high density Mass
Storage sequential access Flash. AMD NOR Flash
products offer high speed random access with discrete
control, address, and data pins to support code execu-
tion directly out of Flash. The AMD Mass Storage de-
vices are less expensive than the NOR products, utilize
separate control signals, have a multiplexed command,
address and data bus, and support high speed sequen-
tial memory accesses. These features allow the Mass
Storage devices to satisfy applications that require very
high speed read and write performance at a lower cost
than NOR based products, including code storage ap-
plications.

Applications
Non-volatile Flash memory devices are ideally suited
for both code and data storage applications. If the sys-
tem requires an XIP device, where the application soft-
ware can execute directly out of the Flash, a NOR
based Flash component is an excellent choice. In
some applications considering an XIP non-volatile
Flash, the access time of NOR Flash may be too slow
for optimum system performance or the price is consid-
ered to be too high. For these applications shadow
memory should be considered to complement (non-
volatile) Mass Storage Flash, improving system perfor-
mance while reducing system cost.

While many shadow memory techniques can get quite
complicated, most designers utilize large amounts of
inexpensive DRAM, therefore only the physical mem-
ory approach (page 2) is needed. For those astute de-
signers striving for the ultimate in cost reduction, virtual
memory approaches (page 3) should be considered.

Cost Benefits
Simpler manufacturing processes used to develop
Mass Storage Flash allow for a lower cost per bit/de-
vice, than NOR based Flash solutions. AMD sells
Mass Storage devices that are guaranteed to have no
bad blocks which greatly simplifies the software infra-
structure needed for shadow RAM applications. The
additional cost of hardware/ firmware is offset by the
lower cost of mostly good Flash. Different OPN (order-

ing part numbers) are used to designate whether or not
the device contains known bad blocks. With the appro-
priate hardware and firmware in the system, any com-
ponent with bad blocks can have the defective blocks
“mapped out” of the Flash device by the system appli-
cation.

Data Protection
A high degree of data protection can also be achieved
if temporary code or data changes are made in a vola-
tile memory resource instead of directly in Flash. If
write operations are not permitted directly in the Flash,
there is virtually no risk of a system virus or other sys-
tem related anomaly corrupting the non-volatile infor-
mation. In applications that have high security
sensitivity, operating out of a volatile memory region
helps to prevent unwanted changes to application code
stored in the Flash until those changes can be verified
as safe.

INTRODUCTION
This document discusses the application of code mem-
ory storage in non-volatile Flash in which the applica-
tion code is shadowed to RAM for execution. There are
a number of reasons that it may be desirable, or neces-
sary, to transfer code out of non-volatile memory prior
to normal system operation, like applications with self
modifying code, high performance needs, or those that
desire a lower system cost. These applications may in-
volve very different types of non-volatile Flash memory
technologies, but the system requirements and imple-
mentation for code storage, transfer, and execution are
similar.

The process of transferring the application code from
the non-volatile memory device to the volatile memory
resource is typically referred to as memory “shadow-
ing”. This is because the system application code
stored in one memory area, is identically shadowed (or
copied) into another memory region for execution. One
additional benefit of shadowing memory from the Flash
memory to another memory resource is that the code
stored in the non-volatile device can be compressed to
reduce the amount of non-volatile memory needed.
Decompression of the stored information may be per-
formed as the compressed code is transferred out of
non-volatile storage.
Publication# 22292 Rev: A Amendment/0
Issue Date: December 1998

Self Modifying Code
For applications in which the application code is self
modifying, the risk of Flash code corruption, makes it
necessary to transfer some or all of the application
code from the Flash device to non-volatile memory. In
this case the Flash is capable of XIP and can store the
initialization code needed to transfer the Flash code to
the non-volatile resource.

High Performance Considerations
In the case of XIP capable Flash storing the application
code, the executable code is transferred to shadow
memory to provide higher performance operation. As
an example, a high density 32 Mb Flash memory de-
vice may have a read access time of 70 ns operating in
a system running at 33 MHz which requires zero wait
state performance. Since the Flash memory device is
too slow to allow zero wait state system performance,
the application code stored in the Flash must be trans-
ferred into a separate memory resource with an access
time or 25 ns or less, depending on the actual applica-
tion. The executable code can be transferred to a high
speed SRAM or SDRAM memory resource which is ca-
pable of faster read access. A boot loader program can
handle transferring the application code from Flash to
the high speed memory. Since the information only
needs to be shadowed during system initialization, per-
formance typically is not an issue.

Non-Volatile Memory Not Capable of XIP
When non-volatile memory is utilized which does not
support XIP operations, there is no choice available but
to transfer the application code to an off chip XIP mem-
ory resource for code execution. The non-XIP code
storage may involve very low cost Mass Storage Flash,
capable of sequential access only, or one of the Serial
Flash memory technologies which can only transfer in-
formation as a serial bit stream. In both the Mass Stor-
age and Serial Flash applications, the code that is
stored in the device must be shadowed into an XIP ca-
pable memory resource before the system can execute
the code. And, since the non-volatile memory device is

incapable of performing any code execution, a small
amount of non-volatile off chip memory capable of XIP
to run the boot loader is needed. Or else a specialized
ASIC that is capable of generating the proper signals to
copy the contents of the Flash device to the off chip
memory may be used.

PHYSICAL MEMORY APPROACH

Full Shadow Memory Technique
By far, the simplest shadow memory technique to em-
ploy at the system level is the full memory shadow tech-
nique. In this case the amount of shadow memory
available must be large enough to hold all of the appli-
cation software that was stored in the non-volatile
memory area. As the system is initialized, all of the ap-
plication code stored in the Flash device is transferred
to the shadow memory with decompression being per-
formed on the stored information as needed. In this
case there is no real distinction between the two mem-
ory resources other than the fact that the volatile mem-
ory is XIP while the non-volatile memory is either non-
XIP or lower performance memory. This application
does not treat the non-volatile memory as a virtual
memory resource, as described in the following sec-
tion, but simply as a physical memory device that is
only used during initialization. The full shadow memory
technique provides the highest performance, but at the
highest cost, of all the shadow memory applications
discussed.

There may be no specialized hardware required in the
system to implement this shadow memory procedure,
and the memory transfer may be handled by software
alone. The microprocessor, microcontroller, or ASIC
simply copies one memory region to the other and then
jumps into the shadow memory for code execution.
Once all of the information in the Flash device is trans-
ferred to the shadow memory region, the non-volatile
memory is no longer required and may be powered
down or placed in a low power standby mode. Figure
1 shows how the system appears during initialization
and normal operation.
2 Mass Storage Flash for Code Storage Applications

Figure 1. Shadow Memory Example

VIRTUAL MEMORY APPROACH
With Mass Storage non-XIP Flash approaching 128MB
(megabyte) device densities, there is a strong incentive
to utilize a smaller amount of volatile memory in the
system to execute code stored in the Flash array. In
these applications the volatile memory is treated as
physical memory while the non-volatile Flash is treated
as virtual memory. Where there is not enough off chip
volatile memory to store all of the executable code,
some form of paging algorithm must be employed. In
these applications “demand paging” or “lazy evalua-
tion” is typically used to move the necessary pages of
code into the physical memory. Lazy evaluation simply
indicates that a page of executable code is not moved
into the volatile memory until it is actually needed for
execution.

Virtual memory applications can be far more complex
to implement than the full shadow memory technique.
The system must determine when the necessary infor-
mation is not available in the physical memory and
needs to be paged in from the virtual memory re-
source. The system must also utilize an efficient
method of determining which pages of memory are
older or “stale,” so that frequently used code can re-
main resident in the physical memory. This allows in-
frequently used code to be replaced during paging
operations. Once a virtual memory page is loaded into
physical memory, address translation logic is needed
so that virtual memory addresses can be converted to
physical memory addresses. This address translation
must be fully transparent to the system.

Demand Paging
Demand paging is somewhat analogous to a caching
scheme used in most personal computer systems. In
a memory read operation, if a memory access does not

locate the information needed in the high speed SRAM
cache, a cache line-fill operation is performed to move
a small block of information from the lower performance
main memory to the high speed cache memory. Since
most code executes in a fairly linear sequence, and fre-
quently loops into recently used code, the processor
can usually find the information needed in the high
speed cache. This is a classic example of demand
paging where a page of information is not transferred
until it is needed.

If a demand paging application is to be used, the sys-
tem designer must select which algorithm will be used
to determine which existing, valid, page of information
is to be replaced with a newly requested page. There
are a number of different algorithm classes to choose
from and a few of the most common are included here.
These are the DM (Direct Mapped), FIFO (First-In,
First-Out), and LRU (Least Recently Used) algorithms.

Regardless of the algorithm used the system must em-
ploy some form of valid page logic to mark which virtual
memory pages are resident in physical memory (valid)
and which are not (invalid). The process of updating
the pages in physical memory may be performed in
hardware or software with hardware solutions being the
fastest, or highest performance solutions. In a hard-
ware application, when one of the page table valid bits
indicates that the requested memory location is invalid,
the memory cycle is put on hold and the appropriate
page of information is copied from virtual memory to
physical memory. In a software approach when the
memory address falls within an invalid page, a page
fault occurs which generates an interrupt to the system.
A page fault interrupt handler would then execute which
would move the appropriate page of information into
physical memory. The interrupt handler would then
transfer control back to the application to continue.

During System Initialization

Memory
Control
Logic

(Active)

Mass Storage
Flash

(Active)

Volatile
Memory
Resource
(Active)

Read Data Write Data

During Normal System Operation

Memory
Control
Logic

(Inactive)

Non-Volatile
Memory
Resource
(Inactive)

Volatile
Memory
Resource
(Active)
Mass Storage Flash for Code Storage Applications 3

A simple form of valid logic may consist of a one bit
wide SRAM with a separate addressable location for
every page in the Flash device. When the system is ini-
tialized all of the SRAM locations are cleared to zero in-
dicating that all pages in physical memory are invalid.
Whenever a page is copied from virtual memory to
physical memory the appropriate Valid Page Bit in the
SRAM is set to one. Whenever a memory access is
performed the valid bit is checked. If the valid bit is set
to one the memory cycle is allowed to complete since
the target page is valid in physical memory. If the valid
bit is zero, the current memory cycle is suspended until
the requested page is copied from virtual memory to
physical memory, and then the suspended memory
cycle is allowed to complete. This type of valid page
logic is necessary whenever a paging application is
used and would typically be handled by the system
control logic.

Paging Algorithms
Each of the paging algorithms discussed will assume
an extremely simple virtual and physical memory im-
plementation. For convenience sake, each page in the
virtual memory device is assigned a page size of 512
bytes, and the physical memory resource is 25% the
size of the virtual memory device or array. For exam-
ple, an application using 128 MB of Flash as virtual
memory would have 32 MB of physical memory.

A simplified block diagram of this simple system imple-
mentation is shown in Figure 2. The virtual memory
pages run numerically from the least significant device
page (page 00) to the most significant page (page 15).
Code that executes sequentially through the device
would step from one page to the next higher order
page.

Figure 2. Virtual/Physical Memory Application (Example Block Diagram)

As the system executes the demand paging opera-
tions, the pages in physical memory will be replaced, or
overwritten, with new information from virtual memory.
How the system decides which page in physical mem-
ory is replaced depends on the paging algorithm cho-
sen. In the simplified block diagram, the valid page
logic is contained in the system control logic block. If
the system control logic determines that the page is
valid, the physical memory access completes normally.
If the page is determined to be invalid, the memory
cycle is put on hold and system control is passed to the
memory control logic. The memory control logic would
update the page in physical memory, mark the page as
valid, and inform the system control logic that the cycle
should be allowed to complete. The memory control

logic determines which page in physical memory is to
be replaced by a new page from virtual memory.

In system designs that involve paging algorithms, a
trade-off is made between design complexity, physical
memory resources required, and memory perfor-
mance. The best memory performance is achieved
with the fewest page faults incurred which cause a
physical memory page update. The page replacement
algorithm performance comparison chart shown in Fig-
ure 3 is intended to show the relative performance of
the DM (least complex), FIFO (moderately complex),
and LRU (most complex) page replacement algo-
rithms. The performance of the paging algorithms are
compared to the Full Shadow non-paging technique
which provides zero page faults at the highest cost.

0
0

0
4

0
8

1
2

0
1

0
5

0
9

1
3

0
2

0
6

1
0

1
4

0
3

0
7

1
1

1
5

Virtual Memory

0
0

0
1

0
2

0
3

Physical Memory

Memory
Control
Logic

System
Control

Logic

R/W DataWrite DataRead Data

Address Address Address
4 Mass Storage Flash for Code Storage Applications

Figure 3. Page Replacement Algorithm Performance Comparison

DM—Direct Mapped
Of the various paging algorithms discussed here, the
DM algorithm is the simplest to implement. The DM im-
plementation allows only one specific destination page
in the physical memory area for any one page in the vir-
tual memory area. As shown in Figure 4, if any page in

one of the virtual memory “rows” needs to be paged
into the physical memory, it will displace another page
in the same row that was previously loaded into physi-
cal memory. The DM application is not extremely effi-
cient but usually provides reasonably high performance
in most system applications.

Figure 4. DM Page Replacement Algorithm

One of the benefits of this approach is that no logic is
required to determine which page in physical memory
should be discarded to load the new page from virtual
memory. Since there is only one possible physical
memory page location for each virtual memory page,
the only page logic required is the valid page logic
needed to determine if the target address in physical
memory is valid or not.

The primary disadvantage to the direct mapped appli-
cation is the fact that the physical memory may not be
fully utilized. As an example, in an extreme case where
the system boots up into page 00 and then only runs in
pages 00 and 04, only the first page in physical mem-
ory will be used. Whenever the code moves from page
00 to 04 or back again, the system will need to wait

while the memory controller moves the requested page
from virtual memory to physical memory, thus wasting
physical memory blocks 2, 3, and 4. Some analysis of
the application software can be performed to better op-
timize the performance of the direct mapped paging
scheme. By varying the percentage of physical mem-
ory to virtual memory densities, the system designer
should be able to develop a system that does not leave
too much of the physical memory unused, and also
does not result in an excessive amount of page up-
dates during code execution.

In order to provide a much higher memory system effi-
ciency, it may be necessary to implement one of the
more complex paging algorithms. The more advanced
algorithms include additional logic to assure that the

Max

Page Faults

Min

DM FIFOFull Shadow LRU

0% 100%

Virtual Memory

Physical Memory with Page Updates Over Time

0
4

0
5

0
6

0
7

B

0
4

0
1

0
6

0
7

C

0
8

0
1

0
6

0
7

D

0
0

0
5

0
6

0
7

A

0
0

0
4

0
8

1
2

0
1

0
5

0
9

1
3

0
2

0
6

1
0

1
4

0
3

0
7

1
1

1
5

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

1
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0

V
a
l
I

d

P
a
g
e

F
l
a

0
1

0
8

0
4

Mass Storage Flash for Code Storage Applications 5

entire physical memory resource is used. No valid
page loaded into physical memory is discarded to
make room for a new page until every page in physical
memory is used. This requires that the additional logic
determine which of the many pages available should
be replaced by the new page.

FIFO—First In, First Out
The FIFO page replacement algorithm generally pro-
vides a higher physical memory page utilization and
higher page hit rate than that provided by the direct
mapped approach. In this application FIFO logic needs

to be added to the memory controller logic to determine
which page in physical memory should be overwritten
with the information from the newly requested virtual
memory page. As shown in Figure 5, any page in vir-
tual memory that needs to be paged into physical
memory, will displace the oldest page that was previ-
ously loaded into physical memory. This page replace-
ment occurs only after all of the physical memory
pages are used. The FIFO algorithm is not the most ef-
ficient algorithm available, but does provide better per-
formance than the direct mapped page replacement
algorithm.

Figure 5. FIFO Page Replacement Algorithm

Some benefits of the FIFO approach are that all of the
pages in physical memory are guaranteed to be used,
any page in virtual memory can be stored in any of the
physical memory pages, and the logic required to im-
plement the FIFO is fairly basic. The FIFO implemen-
tation also does not restrict which locations the virtual
memory pages can be written to in physical memory.
Each time a new virtual memory page of information is
loaded into physical memory, the address of the physi-
cal memory page loaded is clocked into a FIFO. This
allows all of the physical memory pages to be filled be-
fore any page must be overwritten with a new page of
information.

There are still limitations in the FIFO page replacement
algorithm approach which can impact system perfor-
mance. Unfortunately, the FIFO does not consider
which pages in physical memory are used most often
but simply replaces the oldest page when all pages are
used and a new page needs to be loaded. If the first
page loaded is where the application code spends a
majority of its time, that page will still be replaced when
a new virtual memory page is needed and physical
memory is full. This can cause a number of pages that
are accessed frequently to be bumped out of physical

memory by pages of information that may only require
a few bytes of information to be used.

Again, careful structuring of the application code can
be performed to help alleviate this problem. Whenever
possible the code should be structured so that most of
a function, or software routine, can reside in contiguous
memory pages. This will tend to limit the number of
pages that need to be cycled into physical memory in
order for the code to execute. The fewer pages that
must be cycled into memory, the longer each page can
reside in physical memory before being displaced.

The LRU or Least Recently Used page replacement al-
gorithm can be used to improve demand paging perfor-
mance at the hardware level above that provided by the
FIFO algorithm and is discussed in the following sec-
tion.

LRU—Least Recently Used
The LRU page replacement algorithm provides an im-
provement in memory system performance over the
FIFO page replacement algorithm and is one of the
most efficient algorithms available. The goal of the
LRU page replacement algorithm is to determine which

0
0

0
4

1
0

0
3

Virtual Memory
Physical Memory with Page Updates Over Time

B C DA
0
0

0
4

0
8

1
2

0
1

0
5

0
9

1
3

0
2

0
6

1
0

1
4

0
3

0
7

1
1

1
5

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

1
0
0
1
1
0
0
0
0
0
1
0
0
0
0
0

V
a
l
i
d

P
a
g
e

F
l
a
g

0
0

0
4

1
0

0
8

0
0

0
4

1
5

0
8

0
0

1
0

1
5

0
8

Page
Address

FIFO

00
04
10
03

0
1
2
3

08
00
04
10

0
1
2
3

15
08
00
04

0
1
2
3

10
15
08
00

0
1
2
3

08 15 10
6 Mass Storage Flash for Code Storage Applications

of the pages in physical memory is the least recently
used page. The assumption being that, based on past
history, whichever page was least recently used should
be the least probable page to need in the future. Since
a future, or forward looking, algorithm (Optimal Algo-
rithm) cannot be implemented the Least Recently Used
algorithm is the best page replacement algorithm avail-
able.

The algorithm is typically implemented with a counter
for each page in physical memory. Whenever a page
is accessed in physical memory all other pages have
their page counter incremented by 1. When it becomes
necessary to replace a page in physical memory with a
page from virtual memory, the physical memory page
with the highest count is chosen for replacement.

The benefits of the LRU algorithm are that no pages in
physical memory are replaced until the memory is full
and only the least recently used page is chosen for re-

placement. This provides excellent system perfor-
mance in virtually all applications.

The problem with the LRU page replacement algorithm
is that it is generally prohibitively expensive to imple-
ment. The algorithm requires a separate counter for
every page in physical memory. The counters must be
updated once for every access to physical memory to a
different page and are cleared when the associated
page for that counter is accessed. An example of an
LRU page replacement algorithm counter update
scheme is shown in 1. There must also be a block of
count comparison logic that is used to compare the
contents of each page counter to determine which
page has the highest count. This is the LRU page
which should be replaced. There may be more than
one LRU page counter with a maximum count since the
counters are not of infinite length.

Table 1. Example LRU Page Replacement Scheme

For the simplified LRU implementation shown in Figure
6, there are four, three bit counters required for the
physical memory array. In order to provide a better
long term history of page accesses, the size of the

counters can be increased accordingly. This example
allows each page to indicate up to eight accesses since
that page was last used.

Page
Access

Page Counters LRU

Counter 0 Counter 1 Counter 2 Counter 3 Page(s)

Initialize 000 000 000 000 N/A

01 001 000 001 001 0, 2, 3

01 010 000 010 010 0, 2, 3

00 000 001 011 011 2, 3

02 001 010 000 100 3

03 010 011 001 000 1

02 011 100 000 001 1

03 100 101 001 000 1

03 101 110 010 000 1

02 110 111 000 001 1

02 111 111 000 010 0, 1

02 111 111 000 011 0, 1

01 111 000 001 100 0
Mass Storage Flash for Code Storage Applications 7

Figure 6. LRU Page Replacement Algorithm

Please note that in Figure 6 the page address LRU
counters actually count physical memory page ac-
cesses and not page replacements or page updates.
When the physical memory pages are all used, the
LRU page replacement logic will assign one of the
pages with the highest count to be replaced. When a
physical memory page is either accessed or replaced
the corresponding counter for that page is cleared to
zero.

CONCLUSION
In high speed applications and those that require a
lower overall system cost Mass Storage Flash can ef-
fectively be used as the system non-volatile code stor-
age. Shadow memory methods like Full Memory, DM,
FIFO, and LRU can provide the required system perfor-
mance and achieve the system design goals.

0
0

0
4

1
2

1
0

Virtual Memory
Physical Memory Page Access Over Time

B C DA
0
0

0
4

0
8

1
2

0
1

0
5

0
9

1
3

0
2

0
6

1
0

1
4

0
3

0
7

1
1

1
5

00
01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

1
0
0
0
1
0
0
0
0
0
1
0
1
0
0
0

V
a
l
i
d

P
a
g
e

F
l
a
g

0
0

0
4

1
2

1
0

0
0

0
4

1
2

1
0

1
1

0
4

1
2

1
0

Page
Address

LRU
Counters

000
000
000
000

0
1
2
3

001
000
001
001

0
1
2
3

010
000
010
010

0
1
2
3

000
001
011
011

0
1
2
3

8 Mass Storage Flash for Code Storage Applications

	Executive Summary
	Applications
	Cost Benefits
	Data Protection

	Introduction
	Self Modifying Code
	High Performance Considerations
	Non-Volatile Memory Not Capable of XIP

	Physical Memory Approach
	Full Shadow Memory Technique
	Figure 1.� Shadow Memory Example

	Virtual Memory Approach
	Demand Paging
	Paging Algorithms
	Figure 2.� Virtual/Physical Memory Application (Example Block Diagram)
	Figure 3.� Page Replacement Algorithm Performance Comparison
	DM—Direct Mapped
	Figure 4.� DM Page Replacement Algorithm
	FIFO—First In, First Out
	Figure 5.� FIFO Page Replacement Algorithm
	LRU—Least Recently Used
	Table 1.� Example LRU Page Replacement Scheme
	Figure 6.� LRU Page Replacement Algorithm

	Conclusion

